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and the characteristic equation is given by
(1o — B2?) sin Bud + (o1 + a2)BzecosB.d =0 (A.3)
where
o= (B2~ k)2 >0 a = (8.2 — k2)V2 > 0.

For the TM-modes group, the field components in an
anisotropic dielectric slab are expressed as

H.=0

=“’_"‘{

E, A cos B,z + B sin Bz}

2

H, = b{ jA sin B,z — jB cos Bz}

E, =0 (A.4)
where
k..2 k.2
— 2 2 =k,2 — 2
b B:B: e k,f‘s

and the characteristic equation is given by

k?le? ) ks?
(Otlol2 - ;‘;zz: 612) s :Bld + (k22z2

ke
ar + k‘i‘z aZ).Bz

ccos B.d =0 (A5)
where

ar= (82— kN2 >0 ay = (B2 — k2)¥2 > 0.
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Electromagnetic-W ave Propagation in the Shielded Ring Line

YVES GARAULT ano CLAUDE FRAY

Abstract—A theoretical analysis is presented of a periodic struc-
ture consisting of equally spaced perfectly conducting rings. The
dispersion relation satisfied by the different modes of the shielded
ring line is determined. This analysis shows that cylindrically sym-
metric modes identical with those of smooth guides and hybrid
modes can travel in this periodical structure.

The asymptotic values of the dispersion relation show the different
properties of these hybrid modes. The EH,; modes can be slow,
fast, or can travel at light velocity according to the frequency. The
EH,; (¢ > 1) modes are fast modes and exchange their cutoff fre-
quencies for particular values of the geometrical parameters of the
structure.

These theoretical predictions are verified experimentally by re-
cording the dispersion characteristics of the first modes.

For deflecting radio-frequency structures, the fundamental EH;,
mode is interesting. This deflection constant is measured on a
w/2 wave structure.

I. InTRODUCTION

N THE SETTING of a research of waveguide struc-
tures for RF separators of ultrarelativistic particles,
we studied the shielded ring line in which the fundamental
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hybrid mode is a very interesting deflector mode. In order
to study this structure, we followed the same method
that Pierce and Field [1] utilized to investigate the propa-
gation of surface waves on the helix. Pierce assumed the
helix to be an ideal eylinder with conduction in the helical
direction only (the “sheath’ helix). The space harmonic
fields are then neglected. A more satisfying approach
called the “tape” helix was given by Sensiper [27]. He
assumed the helix to be wound to an infinitely thin con-
ducting tape and took the electric field at the center line
of the tape to be zero. In other respects, he studied a
limiting case of the helix: the open ring line composed of
equally spaced perfectly conducting rings.

The surface waves which travel along this open ring
line are slow waves (v, < ¢). In the Brillouin diagram
w = f(B) connecting the wave frequency to the phase
constant B, the dispersion characteristics of modes are
only to be found in the slow-wave domain. If we surround
this line with a conducting pipe, the modes can be fast
and the dispersion characteristic intersects the straight
line », = ¢ and is carried on into the fast-wave domain.
We have developed the partial study of Falnes [37 on the
different modes of this structure.
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These modes which can travel at light velocity are
hybrid EH modes (E.H, 7 0). When the velocity is
very close to ¢, only certain hybrid EH solutions provide
a deflecting force that is not negligibly small. In cylin-
drical coordinates, the modes with angular symmetry of
first order in 8 are EH deflection modes, and the deflecting
force is practically free of aberrations when v, >~ c. Here
we generally study the hybrid EH modes of n-fold sym-
metry in # which travel intc the shielded ring line and
examine the modes with angular symmetry of first order
in 6 in greater detail. Finally, we measure the deflection
constant for a shielded ring waveguide operating in the
fundamental mode at 3 GHaz.

II. ProrERTIES OF GUIDED WAVES PARALLEL TO
THE 0z AXIS

The electromagnetic field of a wave traveling without
attenuation in the direction of the z axis can be written in
the form

& = (E;: + E.u) exp j(wt — B2) (1)

3¢ = (H, + Hu) expj(wt — B2) (2)

where E, H, and E_H,, are, respectively, the projections
of & and 3¢ on a transverse plane perpendicular to 0z and
on this axis of unit vector u; 8 = w/v, is the phase con-
stant.

By introducing & and 3¢ into Maxwell’s equation, we
deduce the relation [4]

k2E, = j[kZ(u X V.H,) — BV.E,] (3)
kH, = —j[k/Z(u X V.E,) + V.H.] (4
V2 + k2 =0. (5)

H, H,

Here k = w(ew)V? = w/c is the wavenumber for plane
uniform waves, k2 = k> — 8% is the cutoff wavenumber,
and Z = (u/e)'? is the wave impedance of the medium.
The relations (3) and (4) express the transverse compo-
nents in terms of the longitudinal components, provided
v, ¥ c; the latter are solutions of the scalar wave equa-
tions. '

At v, = ¢, both E, and H, components can exist and
satisfy the relation [5]

Z(u X V.H,) = V.iE.. (6)

Then (3) and (4) are compatible.

This hybrid wave satisfyicg (6) at v, = ¢ is an “EH”
wave (E.H, % 0) [5]. These hybrid waves are traveling
in waveguides of heterogeneous structures and in periodic
waveguides as the through periodic waveguides [6], the
iris-loaded waveguide [7], and also, precisely, the shielded
ring line.

We are lead to use solutions of (5) that are continuous
for any phase velocity. In the cylindrical coordinates
(r8,2) the longitudinal components can be expressed in
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Fig. 1.

Fig. 2. The characters with arrows over them appear boldface
in the text.

the form [omitting the time factor exp (jwt — B2)] at
vp F C:

E, Eo By

I (xerp) +
Hz Ho Hl

cos nd

N (xep)
sin n@

where 7 is a positive integer which characterizes the sym-
metry in 6 of the different modes; J,*(x.,p) and N.%{x,p)
are modified forms of Bessel functions [5, appendix II,
pp. 296, 300] that are correct for any value of v,. These
solutions are given by making the following transforma-
tion ko = x.kr = x.o In (5). It can be shown that

I (xer0) = xS @( XcP)
N2 (xep) = x(210g X n(Xep) — TNw(xcp))

where J,.(x.p) and N,(x.p) are trigonometric Bessel func-
tions of the first and second kinds.

It

IT1. DisreERsION RELATIONS SATISFIED BY THE DIFFERENT
Mobpes oF THE SHIELDED RING LINE

In order to simplify the analysis, we replace the real
periodic ring line (Fig. 1) by a nonperiodic sheath which
can conduct only in the ring direction (Fig. 2). This
analysis gives satisfactory results, provided that the perio-
dicity of the real structure is small compared with the
wavelength.

Since it is not possible to solve (3) and (4) directly we
are forced to decompose this structure into the two re-
gions in which we can express the field components.

In the axial zone of diameter 2a in Fig. 2 (diameter of
the continuous anisotropic surface), the components re-
main finite on axis and are then independent of N, (xc,p).
In the coaxial zone of inner diameter 2a and outer diameter
2b, the EH waves satisfy for r = b the boundary conditions
of both TE and TM waves of smooth guides:

H.
E.(kb,§) = 0+ b6y = 0.
dp

The most general EH wave, for v, # ¢, has longitudinal
fields of the form: '



94 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1974

1) axial zone:

B! El
= J 0 (Xc;P)
H! H!

cos nd

sin nd
2) coaxial zone:
E. = El1Y,%(x.,p) cos nd
H. " = HYZ,*(x.,p) sin nf
" with
Y2 {xep) = Nl (xerkb)J n® (xerp) — N (xerp)J n* (x0)kb)
Za (Xerp) = N (xe,J0)Jn* (Xe:0) — N (Xe30) S o (X0, D) -

The transverse components of the two regions are deduced
from the longitudinal components with the aid of (3)
and (4).

Over the common surface, the tangential components
of both regions must be continuous. The equivalent bound-
ary conditions are for r = a

El=FEu Tt = B!t = 0

We obtain a homogeneous system. of linear equations.
A nontrivial solution exists only if the determinant of the
system is zero. The dispersion relation is determined from
the equation resulting from the requirement that the
determinant vanishes. By solving directly and simplify-
ing by x.2, we obtain at v, 3 ¢

Het = Ho'™

BZ

n 2
7 no ¢y nol c;k nO c;k
E (ka)J (Xer k@) T 2% (xerk0) ¥ n® (Xerkat)

+ I (Xer k@) T 20 (Xe, J0) 2, (xeskoa) = 0. (7)

At v, = ¢, the dispersion relation collapses into an in-
determinate form. To obtain the proper expression it is
only necessary to transform (7) in such a way that x.2
appears as a factor and to substitute the modified Bessel
functions by their expressions when v, = ¢ [9]. If we
simplify by » 5 0, ka # 0, and introduce p = b/a, we
obtain

2 , Plogp

O T L
2n _ 1 —p? _ P
(ka)? n-+1 p™—p~
pn+l - p—(n+1) pn—l — pl—n
{ 1 P , n>2. (9

These expressions show that only one hybrid wave
travels along the shielded ring line for each value of n # 0,
at v, = c.

IV. AnvavLysis oF THE DISPERSION RELATION

A. The Special Case of Cylindrical Symmetry, n = 0
In this case, in which the fields are independent of 8,

the dispersion relation (7) becomes

Jo (kea)J o (k) Zy (kea) = 0. (10)

These modes are modes of smooth guides that, with our
approximation, are unperturbed by the rings. They cor-
respond to:
1) the TM,, modes of a smooth guide of diameter 2b;
2) the TEy, modes of a smooth guide of diameter 2a;
3) the TEy, coaxial modes of a coaxial guide (a,b).

B. Study of Dispersion Relation at Cutoff

The phase velocity of the modes is infinite at cutoff;
B is zero and x2 = 1 — B2/k? is equal to unity. The dis-
persion relation takes the simple form

Ju (kb)) (ka)Z,' (ka) = 0. (11)

At cutoff, the structure of the hybrid modes is the
same as: 1) the TM,, modes of the smooth guide of
diameter 2b when kb is equal to one of the y.* roots of
J.(kb); 2) the TE,, modes of the smooth guide of diam-
eter 2a when ka is equal to one of the z.’ roots of J,/(ka) ;
3) the TE,, coaxial modes of the coaxial guide (a,b) when
ka is equal to one of the z,° roots of Z,’ (ka).

When p = b/a varies from infinity to unity; the TH,,
modes (¢gth mode of n~fold symmetry in 6 encountered in
the increasing frequency scale) are divided into two types:
1) the EH,: modes, the cutoff structure of which is TE,,
coaxial for any geometrical parameters of the structure;
2) the EH,,(¢ > 1) modes, the cutoff structure of which
is TM or TE, according to the value of p. If we take p
as the abscissa and y = kb as the ordinate of Cartesian
axes, the curves representing the cutoff frequencies of the
TM,, modes are straight lines parallel to the p axis, inter-
secting the y axis at y,¢; the straight lines y = pz,’ having
a slope z.’ represent the cutoff frequencies of the TE,;
modes; the curves y = z,p represent the cutoff frequencies
of the TE.,, coaxial modes. We have plotted these curves
in Fig. 3 for n = 1 and 4,j,v = 1-.-4. As p varies from
© to 1, the curve that represents the variation of the
gth (>1) cutoff frequency is a continuous step function.
This is shown in Fig. 3 by the double and triple arrows
for the second and third cutoff frequencies of the modes
symmetric in § The exchange of cutoff frequencies is
explained by the coupling between modes of the same 6
symametry. Such two EH modes are not orthogonal and are
coupled according to the theory of Pierce and Tien [107].
For a given value, p = p,, the order of the cutoff frequen-
cies is determined by noting the ordinates of the points of
intersection of the line p = p, with the curves in the
order of increasing values of y. ’

C. Properties of Hybrid Modes

The asymptotic values (8 — «) of the dispersion rela-
tion show the different properties of these hybrid modes.

1) [EH. Modes: These modes can be slow, fast, or can
travel at light velocity according to the frequency. Their
dispersion curves tend asymptotically to the straight line
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Fig. 3. The cutoff frequencies of the EH modes with first-order
angular symmetry as a function of p = b/a.

ka = n and pass through a maximum (ka)yg.x = 7 + A,
where A, is a very small positive number (4A; =~ 0.017).

The relations (8) and (9) show that for any value of p
the ordinate of the intersect point from the dispersion
curve to the straight line v, = ¢ exists only in the range
(n? — 1)¥2 < ka < n. The maximum ordinate, always
greater than n, is in the domain of the slow waves.

At v, < ¢, the properties of EH,; modes are the same
as those of the modes of the open ring line investigated by
Sensiper [2]. If we substitute the modified Bessel func-
tions to the hyperbolic Bessel functions of the first and
second kinds in (7) and allow b to tend to infinity we
obtain the following dispersion relation:

B (kc*a
ko n >
where k.*2 = 82 — k2. This expression is the same as that
obtained by Sensiper for the open ring line.
The transverse components of the electromagnetic field
deduced from (3) and (4) are indeterminate at v, = c.
After transformations [9], we obtain the proper compo-

nents (see the Appendix) and express the power for the
fundamental EH;; mode by

L)/ (k. *a) K.’ (k*a)
(k*a) K, (ko*a)

2 70 5 11 1
P = EU k 1 - —
[( a)’p* {ogp g 1 4}

+1——p +— —p*logp

)

Fig. 4. Dispersion characteristic of the EH;, and EHw modes as p
decreases from 2.2 to 1.8 with 2b = 0.1 m.

This power flux is always positive and brings into
evidence that this mode is forward at v, = c.

2) EH,, (¢ > 1) Modes: The dispersion curves of these
modes are asymptotic to the straight line v, = ¢ when
tends to infinity. Consequently, the XH,, modes are fast
modes.

When p is varied, all these hybrid modes with nf sym-
metry present successively an abnormal dispersion curve
with a minimum and exchange the cutoff frequencies for
particular values of p.

Fig. 4 shows how the dispersion curves of the EHj,
(TMy at cutoff) and EH,; (TEy; at cutoff) modes change
as p decreases from 2.2 to 1.8.

On both sides of p = 2.08, for which the cutoff frequen-
cies of the EH;» and EH;; modes are equal to each other,
the characteristic of the EH;, mode is distorted, having
a minimum beyond cutoff in the fast-wave domain
(vp > ¢). This point is the upper boundary of a frequency
zone in which the wavenumber is complex, even though
there are no losses in walls or medium [5], [11]. For all
values of p below 2.08 the cutoff structure of the EH,,
mode is T'Ey;, whereas that of the EHy; mode is TMy,.

Fig. 5 shows the theoretical dispersion curves of the
modes of the shielded ring line for the following geometrical
parameters: 2b = 10 em, 26 = 5 cm.

V. ExperiMENTAL RESULTS

In the real periodic structure, a progressive mode is
constituted of an infinite number of spatial harmonics;
their wavenumbers are of the form 8, = 8; + 2xm/H, in
which By = /vy is the wavenumber of the fundamental
component of the modes. The dispersion curve is an even
periodic curve with periodicity 2x/H. For recording the
dispersion characteristics of the first modes, we trans-
formed a section of the structure into a resonant cavity
by placing shorting end plates in two symmetry planes
midway between the rings.

In this cavity three equally spaced rods of sintered
alumina hold up and adjust the rings. Between the rings,
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Fig. 5. Theoretical dispersion curves for the first modes of a shielded
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Teflon braces are threaded on the rods and keep the con-
stant period (Fig. 6). A series of holes was drilled in the
short-circuit planes, allowing us to investigate the r and 6
variation of the modes with the aid of electric and mag-
netic probes connected to detectors. Once the symmetry
of the mode has been established and the resonant fre-
quency measured with an electronic counter, it is con-
venient to measure the phase difference 8,L of the fields
over the length I = nH to enable us to measure the
corresponding point of the dispersion characteristic in the
Brillouin diagram. In order to make this measurement,
we explore the system of standing waves in the structure
by moving a dielectric bead parallel to the z axis (Fig. 7);

this perturbs the resonant frequency by an amount pro--

portional to the square of the E-field.

Figs. 8 and 9 show the results of measurements on the
structures having the same diameters 2b = 10 em and
2a = 42 mm, with pitches equal to 10 mm and 25 mm.
Beside these curves are indicated the theoretical values
of the cutoff frequencies of the roots at v, = ¢ and the

SHORT-CIRCUIT PLANE

Tereon seace [1i] ]
o 74 w"l ’
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Fig. 6. Experimental cavity.
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Fig. 7. Schematic diagram of the experimental setup.
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asymptotic values of the frequency for the different
modes. From these diagrams, we see that dispersion char-
acteristics have just the appearance predicted by the
theory.

The dispersion curves of the EH,; modes are very flat
in the slow-wave domain as theory predicts (see Fig. 5).
The periodicity affects these curves and reduces their
passbands as the pitch increases. When the phase velocity
is equal to the velocity of light, the experimental frequen-
cies of the EH;; and EHy modes should be higher than
the theoretical values which are obtained by the sheath
theory. Now, they are smaller for the structure of pitch
10 mm. This departure eaused by the alumina rods which
slightly lowers the resonant frequencies of the cavity.

The agreement is good for the coupling of the EHy,
and EH;; modes, but the increase in spacing causes a
certain delay because the experimental cutoff frequency
is lower than the theoretical value which is that of a TEy
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Fig. 8. Dispersion characteristic for the fundamental components
of the mode of a shielded ring line (H = 0.01 m, 2¢ = 0.042 m,
2b =0.1m,p =b/a = 2.38).

mode in a smooth guide of diameter 2q¢. For H = 25 mm,
the discrepancy between the theoretical and experimental
values is much higher than in the case H = 10 mm. This
is explained by the fact that as the pitch increases, the
interaction between the rings is reduced; so that to obtain
the same degree of coupling, p must be smaller. For modes
that reduce to TM modes at cutoff, the experimental fre-
quencies are lowered both by rings and alumina rods.

Fig. 10 shows the results of measurements on the struc-
ture with spacing 25 mm and p = 1.62. The passband of
the EH,: modes has considerably lowered (as theory
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Fig. 9. Dispersion characteristic for the fundamental components
of the mode of a shielded ring line (H = 0.025 m, 2a = 0.042 m,
2b =01m,p =b/a = 2.38).

predicts) in comparison with Fig. 9. We notice the cutoff
frequency exchange between the EHy, and EHy; modes.

V1. ConcrLusioN

This theoretical and experimental analysis provides de-
tailed knowledge on the propagation of electromagnetic
waves into the shielded ring line. The EH,; modes which
present a finite passband determined by the geometrical
parameters of the structure can interact with particles
traveling at velocities close to the light velocity. For
deflecting RF¥ structures, the fundamental EHy; mode is
the only interesting one, because its gradient of longi-
tudinal electric component is different from zero on the
axis of the structure.

We have carried out studies on a shielded ring wave-
guide operating in the EHy deflector mode with a phase
difference SH = x/2 across a cell at v, = ¢. Two Teflon
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F GHz structure and the ring shape in order to reduce the space
/ ) harmonics. Their amplitude is not negligible. An impor-
™ / : tant advantage of the deflecting ring waveguide is that
02 the diameter is about half as large as that of the deflecting
55| | disk-loaded waveguide working at the same frequency.
TM( b) 5 This property is particularly interesting in the construe-
021~ tion of a deflecting guide for heavy particles at low fre-
| quency.
(b5t EHay
TM21) o i APPENDIX
ab i
TEy == EHaa — CoMPoONENTS OF THE ELECTROMAGNETIC FIELD AT 9, = C
TE%) 45 : .
T 7 ; A. Axial Zone
g E.I = Ep” cos nf
EH, E .
4 ; ZyH,! = —Ep~ sin nf
5 E
3, i El = —j——— p" Y (ka)? + p?} cos nf
b) : 2(n+ 1)
m(,; A, 5
TED) — i . E .
3 E El = —j mpn_l{ (ka)? — p?} sin nd
—t
TE(;) 3t ; ZH,! = jm pH(ka)? — p* — 2n(n + 1)} sin nd
1 1 i
EHyp i
EH E ._E
b)2'5' 21 | ZH' =3 m p" Y (ka)? + p> — 2n(n + 1)} cosné
Tedy | é
™8 7 TMor g with E = EY/2m!.
2 s E B. Coazxial Zone
AN |
| EI [/ p\* (kb\"
: El=—3{—-) —(— 0
| AG) - () e
15] -
EHy 4 ‘ B " Eb\"
! P .
| Z)H" = — — {{ = — 0
T 1a1b) —+= E ’ nkb Kkb) + (p) } s
1 6H;
. - - forn=1
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Fig. 10. Dispersion characteristic for the fundamental components Ell = jEH LA + kb log —_— Q1} cos 8
of the mode of a shielded ring line (H = 0.025 m, 2a =0.062 m, 4kb  p? p
2b = 0.1m, p = b/a = 1.62).
2 P kb .
. Bl = jEII {”— — = kblog— + QI} sin 6
supports replace the alumina rods and are set in a plane 4kb  p* r

where the longitudinal electric component is zero. At
3 GHz, the deflection constant for a such guide is E,/P'/2 = ) p? R kb ]
1.23.10* V/W¥2, with a group velocity v, = 7-10" m/s, ZH = —jEY {m T Jeb log;— T Sl} sm 6
where E, is the amplitude of E, and P the power flux. For
the deflecting disk-loaded waveguide in operation at o
CERN this constant is equal to Eo/PV2 = 1.88-108 V/ W2, ZoHM = jEM {Zic_l;
with a group velocity v, = 7.2-10% m/s and a working
frequency 2.855 GHz [12]].

Our structure, as it stands, has lower deflecting proper-
ties. We believe these can be strongly improved by investi- Py = (kb)® {_I_Qg_ﬂ . i}
gating the influence of the geometrical parameters of the ! 1—p2 4p?

kb
— 52—1 + kblog— — Sl} cos
P p

with
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_ logp 1+ p‘z}
Q = (kb) {1 A -
Rl = kb + P1
1
S, = A + ¢
forn > 2
. EII n—1
EMN = —j o {(;W (P — p*Q.)
k- n
+ (—0_?7 (R, — p%S,,)} cos né
o
EII pn—l
| 5 U\ S 2
Ea on {(ka)" (Pn + P Qn)
k ”
SRCOLY; p2s,,)} sin g
o
. EII n—1
ZHM = — on {(—?ﬂ;p (P + 200" + p°Qn)
k n
— ( 0:)1 (R, + 2np* + p%S',,)} sin né
o
. EII n—1
ZoHy'! = —J {)—n {(ll,ca)" (Pn + 2np™ — szn)
k n
+ S_a;); (Rn + 2np — pZSn)} cos né
o

with

_ v of 1 P"z")_Z(ka}
P"—p‘"—-p"{(m) <n—1 n—+1 nt—1

1 pon 1 ) 2(kb)2}
— e——— 2 — -
R"—p*"—p"{(ka) (n—l n+1) m—1

p——n pn
n = Sn =
Q n-+1 n-—1
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Abstract—This paper presents an extension of Vajnshtejn’s ap-
proach for computing the resonance frequencies and loss factors of
Fabry-Perot (FP) resonators at microwave frequencies. Numerical
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results are presented for FP resonators operated at microwave
through millimeter frequency range.

I. INTRODUCTION

ABRY-PEROT (FP) and other types of open reso-
nators find useful applications at optical as well as
millimeter or microwave frequencies. Typically, these
resonators consist of two plane or curved mirrors facing



