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and the characteristic equation is given by

(a1a2 – ~.’) Sin&d+ (al+ CY2)13Z-COS @zd = O (A.3)

where

al = (982 — lcl*) 1/2 > 0 al = (/3=2— 1#) ‘1* >0.

For the TM-modes group, the field components in an

anisotropic dielectric slab are expressed as

Hz=O

E, = ~ {A COSLX + Bsin@=x}
2

H. = b{jAsin/3# –jBcos&c)

Eg=O (A.4)

where

b=%
,fM.

and the characteristic equation is given by

“COS&d = O (A.5)

where

[1]

[2]

[3]

[4]

[5]

al = (pz* — klq) m > () (X2 = (/3.2 — W)llq > 0.
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Electromagnetic-Wave Propagation in the Shielded Ring Line

YVES GARAULT AND CLAUDE FRAY

Abstracf—A theoretical analysis is presented of a periodic struc-

ture consisting of equally spaced perfectly conducting rings. The

dispersion relation satisfied by the Werent modes of the shielded

ring line is determined. This analysis shows that cylindrically sym-

metric modes identical with those of smooth guides snd hybrid

modes can travel in thk periodical structure.

The asymptotic values of the dispersion relation show the different

properties of these hybrid modes. The EH.I modes can be slow,

fast, or can travel at light velocity according to the frequency. The

EH.q (q > 1) modes are fast modes and exchange their cutoff fre-

quencies for particular values of the geometrical parameters of the

structure.

These theoretical predktions sre verified experimentally by re-

cording the dispersion characteristics of the first modes.

For deflecting radio-frequency structures, the fundamental EH1l

mode is interesting. This deflection constant is measured on a

7r/2 wave structure.

I. INTRODUCTION

I N THE SETTING of a research of waveguide struc-

tures for RF separators of ultrarelativistic particles,

we studied the shielded ring line in which the fundamental
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hybrid mode is a very interesting deflector mode. In order

to study this structure, we followed the same method

that Pierce and Field [1] utilized to investigate the propa-

gation of surface waves on the helix. Pierce assumed the

helix to be an ideal cylinder with conduction in the helical

direction only (the “sheath” helix). The space harmonic

fields are then neglected. A more satisfying approach

called the “tape” helix was given by Sensiper [2]. He

assumed the helix to be wound to an infinitely thin con-

ducting tape and took the electric field at the center line

of the tape to be zero. In other respects, he studied a

limiting case of the helix: the open ring line composed of

equally spaced perfectly conducting rings.

The surface waves which travel along this open ring

line are slow waves (VP < c). In the Brillouin diagram
~ = j(~) connecting the wave frequent y to the phase

constant f?, the dispersion characteristics of modes are

only to be found in the slow-wave domain. If we surround

this line with a conducting pipe, the modes can be fast

and the dispersion characteristic intersects the straight

line VP = c and is carried on into the fast-wave domain.

We have developed the partial study of Falnes [3] on the

different modes of this structure.
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These modes which can travel at light velocity are

hybrid EH modes (E,,H. # O). When the velocity is

very close to c, only certain hybrid EH solutions provide

a deflecting force that is not negligibly small. In cylin-

drical coordinates, the modes with angular symmetry of
first order in 0 are EH deflection modes, and the deflecting

force is practically free of aberrations when VP= c. Here

we generally study the hybrid EH modes of n-fold sym-

metry in 0 which travel intcl the shielded ring line and

examine the modes with angular symmetry of first order

in tJ in greater detail. Finally, we measure the deflection

constant for a shielded ring waveguide operating in the

fundamental mode at 3 GHz.

II. PROPERTIES OF GUID]JD WAVES PARALLEL TO

THE Oz AXIS

The electromagnetic field of a wave traveling without

attenuation in the direction of the z axis can be written in

the form

8 = (E, + E~u) expj(d – @z) (1)

x = (H, + H~u) exp j(d – @z) (2)

where Ef,H ~ and EZ,H?, are, respectively, the projections

of 8 and K on a transverse plane perpendicular to Oz and

on this axis of unit vector u; @ = U/VP is the phase con-

stant.
By introducing 8 and x into Maxwell’s equation, we

deduce the relation [4]

k2E, = j[kz(u X T7~H2) – L3v-LEJ (3)

k/H, = –j[k/.z(u X VYE,) + 13v~HJ (4)

‘L2c)+kf:)=00(5)

Here k = OJ(eP) ‘/2 = w/c is the wavenumber for plane
uniform waves, lCCZ= E’ — @ is the cutoff wavenumber,

and Z = (u/e) 112is the wave impedance of the medium.

The relations (3) and (4) express the transverse compo-

nents in terms of the longitudinal components, provided

VP # c; the latter are solutions of the scalar wave equa-

tions.

At v, = c, both E= and Hz components can exist and

satisfy the relation [5]

2(u X v.LH,) = VLE,. (6)

Then (3) and (4) are compatible.

This hybrid wave satisfying (6) at VP = c is an “EH”

wave (E=,H, # O) [5]. These hybrid waves are traveling

in waveguides of heterogeneous structures and in periodic

waveguides as the through periodic waveguides [6], the

iris-loaded waveguide [7], and also, precisely, the shielded

ring line.

We are lead to use solutions of (5) that are continuous

for any phase velocity. In the cylindrical coordinates

(r,o,z) the longitudinal components can be expressed in

----- ----- ----

Fig. 2. The characters with arrows over them appear boldface
in the text.

the form [omitting the time factor exp ( jut – ~z) ] at

up # c:

(::)=lc)Jno(xc7p)+c)Nfio(xcp)l(::)

where n is a positive integer which characterizes the symm-

etry in 6 of the different modes; J~” (x.,P) and ~~” (x.,P)

are modified forms of Bessel functions [5, appendix II,

pp. 296, 300] that are correct for any value of v=. These

solutions are given by making the following transforma-

tion k~r = xJw = x~p in (5). It can be shown that

Jwo(xC,p) = Xc-nJ. (XCP)

~n”(xc,p) = x.” (2 log xcJn(xcP) – TN. (XCP) )

where J. (X,P) and N. (X.P) are trigonometric Bessel func-

tions of the first and second kinds.

III. DISPERSION RELATIONS SATISFIED BY THE DIFFERENT

MODES OF THE SHIELDED RING LINE

In order to simplify the analysis, we replace the real

periodic ring line (Fig. 1) by a nonperiodic sheath which

can conduct only in the ring direction (Fig. 2). This

analysis gives satisfactory results, provided that the perio-

dicity of the real structure is small compared with the

wavelength.

Since it is not possible to solve (3) and (4) directly we

are forced to decompose this structure into the two re-

gions in which we can express the field components.

In the axial zone of diameter 2a in Fig. 2 (diameter of

the continuous anisotropic surface), the components re-

main finite on axis and are then independent of N.” (x., P).

In the coaxial zone of inner diameter 2a and outer diameter

2b, the EH waves satisfy for r = b the boundary conditions

of both TE and TM waves of smooth guides:

E.(M,O) = ~ (kb,O) = O.

The most general EH wave, for v, # c, has longitudinal

fields of the form:
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1) axial zone:

(:I=(:)J’(XCP)(:3

,%’) coaxial zone:

E,II = EIIYnO(’.,’) COS?Z6

H,II = HIIZnO(xc,p) sinnt9

with

Y7LO(XC,P)= N.’(’c,kb)Jno(xc,P) –N.O(xc,P)J?tO( xJ~)

z.’ (’C,’) = Nno’ (’C,W)J.O (’C,’) – N.’J (’C,’)J.O’ (’c,kb) .

The transverse components of the two regions are deduced

from the longitudinal components with the aid of (3)

and (4).

Over the common surface, the tangential components

of both regions must be continuous. The equivalent bound-

ary conditions are for r = a

EZI = EZII E/ = EoII = O HoI = HeII.

We obtain a homogeneous system of linear equations.

A nontrivial solution exists only if the determinant of the

system is zero. The dispersion relation is determined from

the equation resulting from the requirement that the

determinant vanishes. By solving directly and simplify-

ing by X.2, we obtain at VP# c

()‘2 : 2JnO(x,,ka)JnO’ (x., II%)Y.” (~,,ka)
G ha

+ .ln” (xJca)JnO(xc,kb) ZnO’ (xc,ka) = 0. (7)

At VP = c, the dispersion relation collapses into an in-

determinate form. To obtain the proper expression it is

only necessary to transform (7) in such a way that ‘.2

appears as a factor and to substitute the modified Bessel

functions by their expressions when VP = c [9]. If we

simplify by n # O, ka + O, and introduce p = b/a, we

obtain

2 p log p
_=l+q _
(ka)’

n=l (8)
p_p–l’

2n 1–P2 P

(ka)’ —‘=n+l —p–~—p’

{

-P .+1 — P–(.+l)

+

pn–1 _ ~l–.

}

7’2>2. (9)
n+l n—1’

These expressions show that only one hybrid wave

travels along the shielded ring line for each value of n # O,

at VP = c.

IV. ANALYSIS OF THE DISPERSION RELATION

A. The Special Case of Cylindrical Symmetry, n = O

In this case, in which the fields are independent of O,

the dispersion relation (7) becomes

Jo’ (k.a)JO(k,b)ZO’ (k.a) = O. (lo)

These modes are modes of smooth guides that, with our

approximation, are unperturbed by the rings. They cor-

respond to:

1) the TMoq modes of a smooth guide of diameter 2b;

2) the TEOQmodes of a smooth guide of diameter 2a;

3) the TE,g coaxial modes of a coaxial guide (a, b).

B. Study of Dispersion Relation at Cutoff

The phase velocity of the modes is infinite at cutoff;
~ is zero and XCz= 1 — ~t/k2 is equal to unity. The dis-

persion relation takes the simple form

J. (kb)J~’ (ka) Z.’ (ka) = O. (11)

At cutoff, the structure of the hybrid modes is the

same as: 1) the TM~g modes of the smooth guide of

diameter 2b when kb is equal to one of the y~i roots of

J. (kb); 2) the TE~q modes of the smooth guide of diam-

eter 2a when ka is equal to one of the x~~ roots of J.’ (ka);

3) the TE~q coaxial modes of the coaxial guide (a,b) when

ka is equal to one of the .znVroots of Z.’ (ka).

When p = b/a varies from infinity to unity; the EHn,

modes (qth mode of n-fold symmetry in 8 encountered in

the increasing frequency scale) are divided into two types:

1) the EHnl modes, the cutoff structure of which is TEnl,

coaxial for any geometrical parameters of the structure;

2) the EH~~ (q > 1) modes, the cutoff structure of which
is TM or TE, according to the value of p. If we take p

as the abscissa and y = kb as the ordinate of Cartesian

axes, the curves representing the cutoff frequencies of the

TM., modes are straight lines parallel to the p axis, inter-

secting the y axis at ymi; the straight lines y = px%~having

a slope xn~ represent the cutoff frequencies of the TE.j

modes; the curves y = z.”p represent the cutoff frequencies

of ,the TE.a coaxial modes. We have plotted these curves

in Fig. 3 for n = 1 and i,~,v = 1...4. As p varies from

~ to 1, the curve that represents the variation of the

@h ( > 1) cutoff frequency is a continuous step function.

This is shown in Fig. 3 by the double and triple arrows

for the second and third cutoff frequencies of the modes

symmetric in o The exchange of cutoff frequencies is

explained by the coupling between modes of the same o

symmetry. Such two EH modes are not orthogonal and are

coupled according to the theory of Pierce and Tien [10].

For a given value, p = po, the order of the cutoff frequen-

cies is determined by noting the ordinates of the points of

intersection of the line p = pO with the curves in the

order of increasing values of y.

C. Properties of Hybrid Modes

The asymptotic values (~ a w ) of the dispersion rela-

tion show the different properties of these hybrid modes.

1) EHnl Modes: These modes can be slow, fast, or can

travel at light velocity according to the frequency. Their

dispersion curves tend asymptotically to the straight line
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and pass through a m.axinmm (lea) ~.. = n + Am,

where Am is a very smajl positive number (Al B 0.017). ““
The relations (8) and (9) show that for any value of p

the ordinate of the intersect, point from the dispersion

curve to the straight line VP -= c exists only in the range

(n’ – 1) ‘/2 ~ ka ~ n. The maximum ordinate, always

greater than n, is in the domain of the slow waves.

At VP < c, the properties of EH.I modes are the same

as those of the modes of the open ring line investigated by

Sensiper [2]. If we substitute the modified Bessel func-

tions to the hyperbolic Bessel functions of the first and

second kinds in (7) and allc~w b to tend to infinity we

obtain the following dispersion relation:

B’ Hk.*a 2 In’ (k.*a) K.’ (k.*a)
~=– n “~(k,”a) “ K.(kC*a)

where kc*2 = B’ – P. This expression is the same as that
obtained by Sensiper for the open ring line.

The transverse components of the electromagnetic field

deduced from (3) and (4) are indeterminate at VP = c.

After transformations [9], we obtain the proper compo-

nents (see the Appendix) and express the power for the

fundamental EHII mode by

[{
P= E’1’~2 (lea)’p’ logp-~~–~–$–~

12p4}

+l–;p’+:’–p’logp

–– {T-,}],+! (P2 – 1)2 (ka)z

2 p’

I
-p-

= ..-.-~
‘. ?mo
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Thk

Dispersion characteristic of the EH,, and EH,j modes as p
decreases from 2.2 to 1.8 with 2b = 0.1 m.

power flux is always positive and brings into

evidence that this mode is forward at VP = c.

2) EH.g (q > 1) Modes: The dispersion curves of these

modes are asymptotic to the straight line VP = c when u

tends to infinity. Consequently, the EHn, modes are fast

modes.

When p is varied, all these hybrid modes with n$ sym-

metry present successively an abnormal dispersion curve

with a minimum and exchange the cutoff frequencies for

particular values of p.

Fig. 4 shows how the dispersion curves of the EH12

(TMII at cutoff ) and EH13 (TEII at cutoff ) modes change

as p decreases from 2.2 to 1.8.

On both sides of p = 2.08, for which the cutoff frequen-

cies of the EH1’ and EHIS modes are equal to each other,

the characteristic of the EH1’ mode is distorted, having

a minimum beyond cutoff in the fast-wave domain

(VP > c). This point is the upper boundary of a frequency

zone in which the wavenumber is complex, even though

there are no losses in walls or medium [5], [11]. For all

values of p below 2.08 the cutoff structure of the EHlz

mode is TE1l, whereas that of the EHIS mode is TM1l.

Fig. 5 shows the theoretical dispersion curves of the

modes of the shielded ring line for the following geometrical

parameters: 2b = 10 cm, 2a = 5 cm.

V. EXPERIMENTAL RESULTS

In the real periodic structure, a progressive mode is

constituted of an infinite number of spatial harmonics;

their wavenumbers are of the form & ‘= Do + 2~m/H, in

which PO= m/vPOis the wavenumber of the fundamental

component of the modes. The dispersion curve is an even

periodic curve with periodicity 27r/H. For recording the

dispersion characteristics of the first modes, we trans-
formed a section of the structure into a resonant cavity

by placing shorting end plates in two symmetry planes

midway between the rings.

In this cavity three equally spaced rods of sintered

alumina hold up and adjust the rings. Between the rings,
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Fig. 5.,

1,5,

TE$U

1
lh

o 1

Theoretical dispersion curves for the first modes of a
ring line (2b = O.lm, p = b/a = 2).

shielded

Teflon braces are threaded on the rods and keep the con-

stant period (Fig. 6). A series of holes was drilled in the

short-circuit planes, allowing us to investigate the r and o

variation of the modes with the aid of electric and mag-
netic probes connected to detectors. Once the symmetry

of the mode has been established and the resonant fre-

quency measured with an electronic counter, it is con-

venient to measure the phase difference &L of the fields

over the length L = nH to enable us to measure the

corresponding point of the dispersion characteristic in the

Brillouin diagram. In order to make this measurement,

we explore the system of standing waves in the structure

by moving a dielectric bead parallel to the z axis (Fig. 7);

this perturbs the resonant frequency by an amount pro-

portional to the square of the E-field.
Figs. 8 and 9 show the results of measurements on the

structures having the same diameters 2b = 1(! cm and

2a = 42 mm, with pitches equal to 10 mm and 25 mm.

Beside these curves are indicated the theoretical values

of the cutoff frequencies of the roots at VP = c and the

SHORT-CIRCUITPLANE

/

I / ] I , TEFLON BRACE

I

t+1: I

d ,, Ju- tfi ,.-

/ I
%

,1,,HOLESFOR PROBE

Fig. 6. Experimental cavity.

T
%wLA,OR

BF

I DIRECTIONALCOUPLER

SCOPE

1+1
COUNTER

Fig. 7. Schematic diagram of the experimental setup.

asymptotic values of the frequency for the different

modes. From these diagrams, we see that dispersion char-

acteristics have just the appearance predicted by the

theory.

The diapersion curves of the EHnl modes are very flat

in the slow-wave domain as theory predicts (see Fig. 5).

The periodicity affects these curves and reduces their

passbands as the pitch increases. When the phase velocity

is equal to the velocity of light, the experimental frequen-

cies of the EHII and EHjl modes should be higher than

the theoretical values which are obtained by’ the sheath

theory. Now, they are smaller for the structure of pitch

10 mm. This departure caused by the alumina rods which

slightly lowers the resonant frequencies of the cavity.
The agreement is good for the coupling of the EHn

and EHl~ modes, but the increase in spacing causes a

certain delay because the experimental cutoff frequency

is lower than the theoretical value which is that of a TEH
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Fig. 8. Dispersion characteristic for the fundamental components
of the mode of a shielded ring line (H = 0.01 m, 2a = 0.042 m,
2b =O.lm, p =b/a =2.38).

mode in a smooth guide of diameter 2a. For H = 25 mm,

the discrepancy between the theoretical and experimental

values is much higher than in the case H = 10 mm. This

is explained by the fact that as the pitch increases, the

interaction between the rings k reduced; so that to obtain

the same degree of coupling, p must be smaller. For modes

that reduce to TM modes at cutoff, the experimental fre-

quencies are lowered both by rings and alumina rods.

Fig. 10 shows the results of measurements on the struc-

ture with spacing 25 mm and p = 1.62. The passband of

the EH~l modes has considerably lowered (as theory

-JGV7 ///11

I EH31 //

o ‘l-f n 3Tf n
T 7 T

Fig. 9. Dispersion characteristic for the fundamental components
of the mode of a shielded ring line (H = 0.025 m, 2a = 0.042 m,
2b = 0.1 m, p = b/a = 2.38).

predicts) in comparison with Fig. 9. We notice the cutoff

frequency exchange between the EH,, and EHZ3 modes.

VI. CONCLUSION

This theoretical and experimental analysis provides de-

tailed knowledge on the propagation of electromagnetic

waves into the shielded ring line. The EHfil modes which

present a finite passband determined by the geometrical

parameters of the structure can interact with particles

traveling at velocities close to the light velocity. For

deflecting RF structures, the fundamental EHII mode is

the only interesting one, because its gradient of longi-

tudinal electric component is different from zero on the

axis of the structure.

We have carried out studies on a shielded ring wave-

guide operating in the EHII deflector mode with a phase

difference f?H = 7r/2 across a cell at VP = c. Two Teflon
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structure and the ring shape in order to reduce the space

harmonics. Their amplitude is not negligible. An impor-

tant advantage of the deflecting ring waveguide is that

the diameter is about half as large as that of the deflecting

disk-loaded waveguide working at the same frequency.

This property is particularly interesting in the construc-

tion of a deflecting guide for heavy particles at low fre-

quency.

COMPONENTS OF THE

A. Axial Zone

EZ1 = Ep” COS d

APPENDIX

ELECTROMAGNETIC FIELD AT VP = C

ZOHZ1 = – Epn sin nO

ErI = –j
E

2(n + 1) p
“-’{ (ka)’ + p’] cos d

E# = –j
E

2(n + 1) @-l{ (~a)’ — p2) sin ~o

ZOH,l = j
E

2(n+ 1) p
‘-’{ (ka)’ – p’ – 2n(n + 1)} sin nO

ZOHO1= j
E

2(n+ 1) p
“-’{ (iia)z + p’ – 2n(n + 1)} cosnO

with E = EI/2”n !.

B. Coaxial Zone

‘zll=%l(ii)%Y}cOsn
‘“H”=-a(il+(winne

forn=l

Fig. 10. Dispersion characteristic for the fundamental components
of the mode of a shielded ring line (H = 0.025 m, 2a =0.062 m,
2b = 0.1 m, p = b/a = 1.62).

supports replace the alumina rods and are set in a plane

where the longitudinal electric component is zero. At

3 GHz, the deflection constant for a such guide is EO/P1\a =

1.23.108 V/Wl@, with a group velocity v, = 7.107 m/s,

where E. is the amplitude of E, and P the power flux. For

the deflecting disk-loaded waveguide in operation at

CERN this constant is equal to EO/P112 = 1.88.103 V/W112,

with a group velocity v~ = 7.2.106 m/s and a working

frequency 2.855 GHz [12].

Our structure, as it stands, has lower deflecting proper-

ties. We believe these can be strongly improved by investi-

gating the influence of the geometrical parameters of the

{

PI
E,ll = jE1l & – —

}
+kblog~– Q, COS8

P2 P

{

PI
E#l = jE1l $b – — –

}
kb log% + QI sin 0

P2 f!

{

R,

}
ZoHell = jE1l 1 – — + lcb log ~ – & COS O

4kb p’ P

with

{

log p 1
PI = (kb)’ —

l–~–4P2 -1
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{
Ql= (kb) +-;–*}

S,=; +Q,

forn>2

{

EII ~.-l
E,II = _j— — (Pn – f%).)

2n (ka)”

+ (ka)n

}
~ (R. – p2S.) cos n$

P

& (P. + P“Q.)

(ka)”—
}

~ (R. + p2S.) sin no

~- (Pn + 2np-” + p’Q.)

(lea) n—
}

~ (R. + 2npn + P’S.) sin nfl
P

G (P. + 2np-” – p’Q.)

+ (ka)”

}
~ (R. + 2npn – p2S.) cos no

P

with

Pm =
1

{(
(~a)’” A –

~-. – ~. n-1
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Resonance Conditions of Open Resonators

at Microwave Frequencies

TATSKJO ITOH, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

Absfracf—This paper presents an extension of Vajnshtejn’s ap- results are presented for FP resonators operated at microwave

preach for computing the resonance frequencies and loss factors of through millimeter frequency range.

Fabry-Perot (FP) resonators at microwave frequencies. Numerical
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